
CalmDroid: Core-Set Based Active Learning for
Multi-Label Android Malware Detection

Minhong Dong1,2, Liyuan Liu1, Mengting Zhang1, Sen Chen3, Wenying He4, Ze Wang1,2, Yude Bai1,2

1School of Software, Tiangong University, Tianjin, China
2Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems, Tiangong University, Tianjin, China

3College of Cryptology and Cyber Science, Nankai University, Tianjin, China
4School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
{2231081178, 2111320207, 2211530206, wangze, baiyude}@tiangong.edu.cn,

tigersenchen@163.com, hwying1234@hebut.edu.cn

Abstract—One of the trends in the evolution of Android malware
is the increasing diversity of malicious behaviors, such as SMS-
related and Internet-related actions. Traditional binary or family-
based classification methods are inadequate for fine-grained
detection of these behaviors. Thus, multi-label classification is
required to identify various malicious behaviors within a single
malware sample. This paper employs an active learning strategy
to add multi-behavior labels to large-scale datasets based on
expert-annotated small-scale datasets. To address the issue of
noisy labels (simulating real-world mislabeling), we propose
CalmDroid, an active learning framework utilizing the core-
set strategy, instead of the confuse-set strategy for updating
the model with out-of-distribution (OOD) points. We evaluate
CalmDroid’s performance using the Drebin and VirusShare
datasets. Experimental results demonstrate that CalmDroid
achieves superior detection performance under varying noise
conditions, with an accuracy improvement of up to 0.704 compared
to the confuse-set strategy. In high-noise environments (15%),
it reaches detection accuracy as high as 0.944. Additionally,
we validate CalmDroid’s capability to detect evolving malware.
Despite behavioral evolution in Drebin malware across different
time steps, CalmDroid consistently achieves detection rates above
70% in the newest time step.

Index Terms—Android Malware, Multi-label Classification,
Active Learning, Core-set Strategy, Label Noise

I. INTRODUCTION

The adoption of smartphones has surged rapidly in recent
years, with the number of global smartphone network users
exceeding 6.9 billion in 2023 [1]. Among the various mobile op-
erating systems, Android OS has become the most popular due
to its open-source nature and extensive application ecosystem,
holding a market share of 70% [2]. However, as the scale of
Android applications grows, so does the prevalence of malware
targeting this platform. Android malware not only threatens user
privacy and data security but also causes significant economic
losses to businesses and society.

Security experts have focused on malware detection as a
countermeasure to this growing threat. Common malware detec-
tion methods include binary classification (malware vs. benign
application) and family classification (family detection) [3, 5].
Both methods fall under single-label classification tasks, where
each malware is assigned to a single category. However,

Yude Bai is the corresponding author. Email: baiyude@tiangong.edu.cn.

these methods face limitations when dealing with the diverse
and continuously evolving behaviors of modern malware.
For instance, binary classification cannot handle samples
exhibiting multiple malicious behaviors simultaneously, while
family classification may overlook the characteristics of novel
malware [4]. As the number of malware families increases and
0-day malware emerges, multi-label classification techniques,
which can simultaneously identify multiple malicious behaviors
in a single sample, have gained significant attention [13, 6, 42].

One of the challenges in Android malware multi-label clas-
sification is the data annotation problem. Well-known datasets
such as Androzoo [7] and Drebin [11] are primarily single-label
datasets. This work builds upon the anonymousCERT dataset,
used in MLCDroid [13], which includes security reports and
categorizes malware into six behavioral classes (e.g., SMS-
related, Ads, etc.). A single malware instance can correspond
to one or more of these classes. MLCDroid employed an active
learning strategy to add multi-label annotations to the malware
in the Drebin dataset, assuming that the annotations in both
anonymousCERT and Drebin are accurate (i.e., noise-free).

However, the model update process in active learning is often
dependent on expert decisions, typically using the confuse-
set strategy to select out-of-distribution (OOD) points. This
approach can lead to mislabeling issues, especially when
processing large volumes of malware, thereby introducing
noise. This noise can negatively impact active learning methods
based on the confuse-set strategy [8], ultimately degrading
model performance. To address this issue, we incorporate the
core-set strategy, commonly used in code learning and image
recognition research [45], into the active learning model. The
core-set strategy inherently filters out noisy samples [9].

To address these challenges, we propose the CalmDroid
(https://github.com/TonyDplus/CalmDroid), which utilizes a
core-set-based active learning approach to tackle the multi-label
classification of Android malware in noisy environments. First,
we extract labeled malware samples from anonymousCERT and,
using similarity-based methods, add multi-label annotations
to unlabeled malware samples from datasets such as Drebin
and Virushare [10]. To better simulate real-world conditions,
CalmDroid introduces noise into these data to mimic potential
classification errors. After labeling the malware samples, we

37

2025 IEEE/ACM 33rd International Conference on Program Comprehension (ICPC)

2643-7171/25/$31.00 ©2025 IEEE
DOI 10.1109/ICPC66645.2025.00013

20
25

 IE
EE

/A
CM

 3
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ro

gr
am

 C
om

pr
eh

en
sio

n
(IC

PC
) |

 9
79

-8
-3

31
5-

02
23

-2
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

PC
66

64
5.

20
25

.0
00

13

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

use clustering to select representative samples (core points).
These selected malware samples help the model maintain high
accuracy and stability in noisy environments during the active
learning process.

Furthermore, to simulate malware evolution, CalmDroid
introduces temporal labeling to the dataset. Specifically, the
training data is divided into multiple time steps, with data
being progressively added to the model over time. Each
time step corresponds to a specific time period, ensuring
that the training process aligns with the real-world scenario
of malware evolving over time. During the active learning
phase, CalmDroid integrates basic classifiers (BC) and multi-
label classifiers (MLC), evaluating and adjusting the model at
each time step based on classification performance. Through
experimental comparisons between the core-set and confuse-
set strategies, we demonstrate that CalmDroid exhibits more
stable performance under varying noise conditions. Notably,
CalmDroid’s accuracy is up to 0.704 higher than that of
the confuse-set strategy when handling complex multi-label
classification tasks.

The contributions of this study are as follows:
• The CalmDroid is the first to apply the core-set strategy

to the multi-label classification of Android malware. By
selecting the most representative core malware samples,
the model enhances the efficiency and accuracy of active
learning.

• CalmDroid exhibits strong robustness to noise. Even in
high-noise environments (with pre-noising applied to the
dataset), it maintains stable classification performance,
achieving accuracy up to 0.944.

• Extensive experiments confirm that the CalmDroid per-
forms well on real-world malware datasets with temporal
evolution, further demonstrating its high applicability in
real-world scenarios.

II. APPROACH

This section introduces the complete workflow of the
CalmDroid, divided into three primary phases: noise injection
into labeled Android malware datasets, selection of Core points,
and time-evolving active learning. We will first describe the
overall framework and subsequently dive into the technical
details of each model component.

A. Overall Framework

As depicted in Fig. 1, the CalmDroid operates through the
following key steps:

Noise Injection into Labeled Data: Initially, labeled
samples are extracted from the Android malware database.
A proportion of noise is injected into these labeled datasets to
simulate real-world classification challenges, such as mislabel-
ing or data corruption.

Core Point Selection: Once the noisy labeled data is
generated, the next phase focuses on selecting the Core points.
Given that CalmDroid leverages the Core-Set strategy, it is
essential to identify the most representative Core points for each
multi-label dataset. Specifically, clustering is employed to group

data samples within each class, and the most representative
points—those with high similarity to other points within their
cluster—are selected as Core points. These Core points are
considered to be the most influential and representative samples
within the dataset, playing a pivotal role in the subsequent active
learning process.

Temporal Partitioning and Active Learning: After
selecting the Core points, the dataset is partitioned based on
temporal sequences to ensure that the training data aligns with
the temporal evolution of real-world malware. The data is
divided into multiple time steps, with each step corresponding
to a specific time interval. During active learning, new training
data is progressively introduced in temporal order at each
training iteration. This temporal partitioning enables CalmDroid
to simulate the Android malware evolution over time.

In the active learning phase, the CalmDroid incorporates
both BC and MLC. After new data is added at each time
step, the model undergoes training and testing to evaluate
its classification performance. The active learning strategy
then adjusts the model parameters based on the test results
and continues adding new data for subsequent training. This
iterative process repeats until all time-partitioned data has been
fully utilized.

The following sections will delve into the technical specifics
of each phase, including the methods for noise injection,
the implementation of clustering, the approach to temporal
partitioning, and the detailed mechanisms of the active learning
strategy.

B. Noise Injection into Labeled Data

1) Acquisition of Labeled Android Malware Datasets:
In this study, several benchmark datasets were provided by
our industry partner, anonymousCERT. It is important to note
that the security reports have been thoroughly verified and
identified by anonymousCERT. Based on their analysis, six
types of malicious behaviors were identified and categorized.
To match these six labels, we referred to [17] and [18], selecting
three widely-used feature categories: API calls, permissions,
and intents. By integrating insights from previous research and
technical documentation [19][20][21], we consolidated a total
of 531 features and 6 types of malware labels.

Due to the limited scale of the benchmark dataset provided
by anonymousCERT, we plan to conduct more extensive
experiments on larger datasets to comprehensively evaluate the
performance of the CalmDroid. Additionally, given the current
lack of mature multi-label classification tools, CalmDroid lever-
ages the anonymousCERT benchmark dataset as a reference to
perform multi-label classification on other large-scale Android
malware datasets.

As illustrated in Fig. 2, for Android malware data not
provided by anonymousCERT, we employed source code
parsing and regularization methods for feature extraction within
the CalmDroid framework. Once the features were obtained,
we performed similarity calculations between the unlabeled
data and the benchmark data from anonymousCERT that had
validated reports. The unlabeled data was assigned multi-label

38

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The Framework of CalmDroid

Fig. 2: The data process of Noise Injection into Labeled Data

results based on the most similar baseline data, thus generating
a labeled Android malware dataset.

2) Noise Injection: Although various tools exist for labeling
malware, misclassification remains a common issue. Both
manual and automated methods can result in errors, especially
when processing large datasets. In this study, we classify such
misclassifications as noise data.

To ensure the initial labeled Android malware dataset is
correctly partitioned, we used the anonymousCERT dataset with
validated reports as the noise-free baseline. To introduce noise,
we randomly altered the labels of a certain proportion of the
data while keeping the features unchanged, thereby simulating
misclassifications that occur in real-world environments. By
setting different noise ratios, we generated datasets with varying
noise levels, specifically 5%, 10%, and 15% noisy datasets.

The process of noise injection can be expressed as follows:

y′ = (1− p) · y + p · η (1)

where y represents the original label, p is the noise ratio,
and η denotes the noise.

C. Core Point Selection

1) Cluster algorithm: To obtain the Core point set required
for the Core-Set strategy in CalmDroid, clustering is first
applied to the noisy dataset to identify the Core points.
Based on multi-label classification, the dataset is divided
into multiple candidate multi-label classes, and the similarity
between samples is calculated to form a similarity matrix.
Clustering methods, such as KNN clustering, are effective
for identifying Core points. In this study, KNN clustering
was employed as the hierarchical clustering method. Given a

similarity matrix Sij and a predefined number of clusters K,
each sample xi determines its neighbors based on its similarity
values Sij , where j represents the index of the other samples,
using the following formula:

Ni = {xj ∈ D | Sij > τ} (2)

where τ is the similarity threshold, and D is the dataset.
KNN clustering is a supervised clustering method, and thus

requires the selection of an appropriate K-value, i.e., the
number of clusters. Too many or too few clusters can negatively
impact performance. To address this issue, we propose an
adaptive cluster selection algorithm to determine the optimal
number of clusters for a given similarity matrix.
Algorithm 1 Adaptive Cluster Number Selection

1: Input: Similarity Divergence Matrix
2: Output: Optimal Number of Clusters and Cluster Labels
3: normalized matrix ← Normalize Matrix
4: Initialize silhouette scores, calinski scores
5: for num clusters in range do
6: labels ← KNN Cluster
7: silhouette avg ← Compute silhouette score
8: calinski score ← Compute Calinski-Harabasz score
9: Append scores

10: end for
11: final scores ← Normalize(α · silhouette scores + β ·

calinski scores)
12: best num clusters ← argmax(final scores)
13: best labels ← Final Clustering
14: Return best num clusters, best labels

The proposed algorithm 1 takes the similarity matrix as input
and performs normalization to ensure that data points are on
a consistent scale. Key variables (best score, optimal number
of clusters) are initialized, and silhouette scores and Calinski-
Harabasz scores are stored for further evaluation. Within a
predefined range of cluster numbers, hierarchical clustering is
iteratively performed, and scores are calculated and normalized.
The optimal number of clusters is identified by calculating
a weighted sum of the evaluation metrics, which generates
the cluster labels. This algorithm enhances the robustness of
clustering results by integrating multiple evaluation metrics,
providing a systematic approach to clustering analysis.

39

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The example of the cluster visualization.

Silhouette scores and Calinski-Harabasz scores serve as the
evaluation metrics for the clustering process. The silhouette
score measures the internal similarity of clusters by computing
the ratio between the average distance of each point to the
points within the same cluster (intra-cluster distance) and
the average distance to points in the nearest other cluster
(inter-cluster distance). Meanwhile, the Calinski-Harabasz score
evaluates the ratio of between-cluster separation to within-
cluster compactness. By combining these two metrics in the
adaptive algorithm, the clustering results can be optimized to
produce well-separated and cohesive clusters.

2) Acquisition Core Point: After determining the optimal
number of clusters and obtaining the clustering results, the
next step is to select the most representative point from each
cluster to be included in the Core set. Specifically, for each
cluster Ck, we select the representative point xi ∈ Ck as the
Core point. This selection is based on the following formula:

xcore = arg max
xi∈Ck

1

|Ck|
∑

xj∈Ck

S(xi, xj) (3)

As illustrated in Fig. 3, different colored points represent
different clusters. Using the adaptive cluster selection algorithm,
the multi-label class is optimally divided into two clusters. The
points in the clusters are distributed across core and peripheral
regions, where points in the core region have higher similarity
to other points and are selected as Core points. Meanwhile, the
peripheral points, which have lower similarity, are classified
into the Confuse set under the traditional Confuse-set strategy.
These Confuse points are likely to introduce ambiguity into
the classification process, contrasting with the Core points.

D. Time-Evolving Active Learning

1) Temporal Partitioning of Datasets: To better reflect
the impact of the temporal evolution of Android malware on
classification model training, the CalmDroid orders all training
samples chronologically after obtaining the Core points and
Confuse points required by traditional models. The training
data is then fed to the active learning model in a time-sequential

manner, with each update introducing training samples that
correspond to a subsequent point on the timeline.

2) Active Learning: In this study, the active learning model
primarily employs a combination of BC and MLC for multi-
label classification tasks.

BC refers to traditional classification algorithms used for
single-label classification tasks, where each classifier is de-
signed to predict a single label. This is formally defined as:

yi = fBC(x) ∈ {0, 1} (4)

where x means the input features, and yi is the output label.
MLC , on the other hand, handle multi-label classification

tasks where each sample can be assigned multiple labels. This
can be expressed as:

Y = fMLC(x) ⊆ {y1, y2, . . . , yn} (5)

The combination of BC and MLC forms the core of the
CalmDroid active learning process, as multi-label classification
problems can often be reduced to a series of single-label
classification tasks. By combining base classifiers, such as
Random Forest or ensemble learning methods, the model’s
robustness and accuracy are significantly enhanced. Current
machine learning frameworks and tools provide comprehensive
support for base classifiers and multi-label classification, mak-
ing the integration of these methods convenient for constructing
and deploying complex multi-label models.

After training on a given set of data, the CalmDroid outputs
the training results for that specific time period and updates
its internal model parameters. Following this, the temporal
partitioning module provides the next set of updated samples,
which are added to the training set. This iterative training
process continues until all samples have been introduced into
the model, at which point the final testing results are generated.

III. EVALUATION

This section evaluates the performance of the proposed
model, CalmDroid, on real-world datasets that evolve over
time. First, we introduce the datasets, evaluation metrics, and
experimental setup. Next, we conduct a detailed analysis of the
model’s improvement through various experiments combining
different MLC algorithms and BC. Finally, we validate the
effectiveness of the model under different noise conditions on
the VirusShare by selecting the best-performing MLC and BC
combinations from the Drebin.

A. Datasets

In this experiment, we utilized two well-known Android
malware datasets: DREBIN [11] and VirusShare [12]. The
DREBIN contains 5,560 Android applications collected from
August 2010 to October 2012, covering 179 distinct malware
families. For this study, we selected 5,456 samples from the
dataset for analysis. Additionally, we collected 5,500 Android
malware samples from the VirusShare, spanning from 2019
to 2022, which represent more modern malware behaviors.
By using these two datasets, we can evaluate the model’s

40

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

performance in a time-evolving, real-world scenario when
conducting active learning under various noise conditions.

B. Evaluation Metrics

Let L denote the set of six predefined labels, where |L| = 6
represents the total number of labels. The test dataset used
to evaluate the pre-trained models is denoted as D, with |D|
representing the total number of samples. Each sample in D
is denoted by xi.

For each sample xi, the true labels are represented
as a boolean vector Yi of length |L|, where Yi =
(Yi,1, . . . , Yi,j , . . . , Yi,|L|). Each Yi,j takes a value of either 1
or 0, indicating whether sample xi is relevant to the malicious
behavior associated with label j.

Similarly, the classification results for sample xi are repre-
sented by a boolean vector Zi = (Zi,1, . . . , Zi,j , . . . , Zi,|L|),
where Zi,j is 1 if the pre-trained model assigns label j to the
sample, and 0 otherwise.

1) Sample-ACC: Sample-ACC [13] is used to evaluate the
overall accuracy of the pre-trained model on the test dataset
and serves as a benchmark metric reflecting the effectiveness of
the multi-label classification approach. As the primary metric,
Sample-ACC helps offer valuable insights for subsequent
analysis, with supplementary metrics supporting it.

In MLC, ensuring that all |L| labels of a given sample
are correctly classified is highly challenging, particularly
when the labeled dataset is limited. Therefore, we adopt an
alternative definition for classification correctness. A sample
xi is considered correctly classified if its classification result
satisfies the following two conditions:

• At least one malicious behavior is correctly detected (true
positive: Yi,j = 1 ∧ Zi,j = 1).

• No false positives are predicted for nonexistent behaviors
(false positive: Yi,j = 0 ∧ Zi,j = 0).

The mathematical definition of Sample-ACC is provided as
follows:

Ci = {Zi,j | ¬((Yi,j = 0) ∧ (Zi,j = 1)), j ∈ [1, |L|]},
C = {xi | ∃Ci ∋ 1, xi ∈ D, i ∈ [1, |D|]},
Sample-ACC = |C|

|D|
(6)

Where Ci represents the classification results of sample
xi after excluding false positives, and C denotes the set of
correctly classified samples where each sample has at least one
malicious behavior detected. Sample-ACC is then defined as
the ratio of correctly classified samples to the total number of
samples in the test dataset.

2) Label-ACC: To assess the model’s detection capability for
each individual label, we introduce the Label-ACC metric. This
metric measures the model’s accuracy for a specific label, with
higher values indicating better performance for that label. Due
to the limited and imbalanced nature of labeled data, overall
accuracy may obscure the model’s deficiencies on labels with
fewer samples. Label-ACC, however, is able to reveal such
shortcomings.


Cj = {xi|∀xi ∈ D, i ∈ N ∩ (0, |D|],
((Yi,j = 1) ∧ (Zi,j = 1)) ∨ ((Yi,j = 0) ∧ (Zi,j = 0))},
Dj = {xi|∀xi ∈ D,Yi,j = 1, i ∈ N ∩ (0, |D|]},
label-ACC =

|Cj |
|Dj | ;

(7)
Here, Cj represents the set of correctly classified samples

for label j, while Dj denotes the set of all samples associated
with label j.

3) Auxiliary Metrics: In addition to the two primary metrics
for classification tasks, particularly for multi-label classification,
we also utilize several auxiliary metrics: Hamming loss, Zero-
one loss, and F1-score [47, 48, 49]. Hamming loss represents
the proportion of misclassified labels among all samples; the
smaller the Hamming loss, the better the model’s performance.
Zero-one loss reflects the proportion of misclassified samples
in the entire dataset; similarly, a lower Zero-one loss indicates
better model performance. F1-score captures both classification
accuracy and completeness, with higher F1-scores signifying
better model effectiveness.

C. Experimental Enviroment

All experiments were conducted on a Lenovo G5000 IRH8,
equipped with a 13th Gen Intel(R) Core(TM) i7-13700H
processor (clock speed 2.40 GHz) and 16GB RAM. Python was
the primary programming language for our implementation.
In this experiment, we selected MEKA v1.9.2 as the core
toolkit for training and evaluating the model. MEKA is
designed to provide a variety of algorithms and evaluation
metrics specifically for multi-label classification problems.
MEKA [14] is an open-source project based on WEKA [15].
By changing the base BC and MLC used in the CalmDroid
within MEKA, we further validated the model’s capabilities.
For all experiments, the training-to-test set ratio was set to
8:2. The training set comprised the complete data prior to
the strategy-based point selection. To ensure fairness in the
experimental results, the number of points selected for both
strategies was set to approximately half of the training set.

D. Results on Drebin

1) Experimental Setup: We tested various combinations of
MLC and BC and ultimately selected five well-performing
combinations to serve as the foundation for the CalmDroid. To
validate the improvements of our active learning strategy under
noisy environments, compared to the traditional confuse-point
selection strategy, we created different noise levels: 5%, 10%,
and 15%. By comparing the performance of CalmDroid using
the Core-set strategy against the Confuse-set strategy under
these varying noise intensities, we aimed to demonstrate the
superiority of the proposed method in handling time-evolving
noisy environments.

2) Comparison of Core-set and Confuse-set Strategies on
the Drebin under 5% Noise: As shown in Table I, under the
5% noise condition, the performance of the Core-set strategy
remains relatively stable across five combinations of BC and

41

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

TABLE I: 5% noise detailed comparison of metrics for different algorithm combinations in different strategies on Drebin.

Strategy Core (with MLC) Confuse (with MLC)
CDN CDN BR CC CDN CDN CDN BR CC CDN

Basic
Classifier LMT J48 Random

Forest
REP
Tree

REP
Tree LMT J48 Random

Forest
REP
Tree

REP
Tree

Hamming Loss 0.087 0.146 0.034 0.041 0.114 0.454 0.495 0.045 0.126 0.291
Zero-One Loss 0.263 0.422 0.180 0.185 0.385 0.726 0.928 0.200 0.344 0.572

F1-Score 0.739 0.485 0.780 0.859 0.667 0.275 0.397 0.895 0.702 0.303
Sample-ACC 0.837 0.824 0.941 0.865 0.833 0.467 0.120 0.911 0.726 0.670

Avg. Label-ACC 0.913 0.854 0.966 0.959 0.886 0.546 0.505 0.955 0.874 0.709
+-ACC +0.367 +0.704 +0.030 +0.139 +0.163 -0.367 -0.704 -0.030 -0.139 -0.163

(a) Avg. Label-ACC. is the average of all labels
(b) +-ACC represent the difference in Sample-ACC between the core-set and the confusion-set

MLC. All combinations yield a Sample-ACC greater than
0.824 and an Avg. Label-ACC above 0.854. This indicates
that the Core-set strategy is highly adaptable in low-noise
environments, maintaining consistent performance. In contrast,
the Confuse-set strategy shows much greater performance
fluctuations under the same conditions, with notably less
stability. When comparing the same combinations, Core-set
consistently outperforms Confuse-set in terms of Sample-ACC.
Although the gap between the two strategies narrows to a mere
0.030 in the Random Forest + BR combination, Core-set still
surpasses Confuse-set. The largest performance gap is observed
in the CDN + J48 combination, where the difference reaches
an impressive 0.704, further demonstrating the superiority of
Core-set in low-noise environments.

In the Core-set strategy, the best-performing combination is
Random Forest + BR, with a Sample-ACC of 0.941 and an
Avg. Label-ACC of 0.966. Comparatively, the best-performing
combination under the Confuse-set strategy is Random Forest
+ BR, with a Sample-ACC of 0.911 and an Avg. Label-
ACC of 0.955. Although Confuse-set performs well in certain
combinations, overall, it falls short compared to Core-set,
particularly in the key metrics of Sample-ACC and Avg. Label-
ACC.

When analyzing the worst-performing combinations, even
the least effective combination in the Core-set strategy, LMT +
CDN, still yields a Sample-ACC of 0.824 and an Avg. Label-
ACC of 0.854. This remains superior to the worst-performing
combination in the Confuse-set strategy, J48 + CDN, which
produces a Sample-ACC of just 0.120 and an Avg. Label-
ACC of 0.505. This stark contrast highlights the higher risk of
misclassification with the Confuse-set strategy, especially when
handling complex multi-label classification tasks in low-noise
environments.

From the perspective of misclassification control, the Core-
set strategy’s Random Forest + CDN combination performs
best in terms of Hamming Loss, achieving a low value of
0.034, indicating a smaller proportion of misclassified labels.
While Confuse-set shows some promise, its best-performing
combination, Random Forest + BR, has a slightly higher Ham-
ming Loss of 0.045, suggesting inferior performance in terms
of misclassification. Additionally, Confuse-set struggles with
Zero-One Loss, particularly with the J48 + CDN combination,
which records a high value of 0.928. This suggests that Confuse-
set has weaker control over misclassifications in low-noise

environments.
In summary, under 5% noise conditions, the Core-set strategy

outperforms the Confuse-set strategy not only in Sample-ACC
and Avg. Label-ACC but also in misclassification control.
Particularly in the Random Forest + CDN combination, the
Core-set strategy’s performance significantly exceeds that of the
Confuse-set strategy, proving its effectiveness in selecting rep-
resentative samples and enhancing classification performance,
especially in stable, low-noise environments.

3) Comparison of Core-set and Confuse-set Strategies on
the Drebin under 10% Noise: As the noise level increases
to 10%, in Table II the performance differences between the
Core-set and Confuse-set strategies become more pronounced.
Similar to the 5% noise scenario, the Core-set strategy continues
to demonstrate stability across various metrics. Although
there is some fluctuation due to the increased noise, all five
combinations of BC and MLC in the Core-set strategy maintain
a Sample-ACC above 0.770, with the highest value being 0.937,
achieved by the Random Forest + BR combination. On the
other hand, the Confuse-set strategy still performs well in
some combinations, such as Random Forest + BR, where the
Sample-ACC reaches 0.896. However, the other combinations
show more significant variation, with the lowest Sample-ACC
being just 0.380, indicating inconsistent performance.

Even when comparing the same methods, Core-set consis-
tently outperforms Confuse-set. The smallest gap between the
two strategies is 0.041 in the Random Forest + BR combination,
slightly larger than the difference under the 5% noise condition.
In the largest gap, found in the CDN + REPtree combination,
the difference reaches 0.451, reflecting the continued superior
performance of the Core-set strategy in environments with
moderate noise levels.

In terms of Avg. Label-ACC, the Core-set strategy retains
high accuracy across all combinations, with values exceeding
0.746, and the highest being 0.972, again achieved by the
Random Forest + BR combination. In contrast, the Confuse-set
strategy shows more volatility, with the lowest Avg. Label-
ACC recorded at 0.603, and only the Random Forest + BR
combination achieving a value of 0.948. This highlights the
Confuse-set strategy’s instability under higher noise levels.

From the misclassification perspective, the Core-set strategy
continues to excel in controlling misclassified labels. The lowest
Hamming Loss is 0.028, achieved by the Random Forest +
BR combination, whereas the best Hamming Loss under the

42

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

TABLE II: 10% noise detailed comparison of metrics for different algorithm combinations in different strategies on Drebin.

Strategy Core (with MLC) Confuse (with MLC)
CDN CDN BR CC CDN CDN CDN BR CC CDN

Basic
Classifier LMT J48 Random

Forest
REP
Tree

REP
Tree LMT J48 Random

Forest
REP
Tree

REP
Tree

Hamming Loss 0.120 0.254 0.028 0.045 0.113 0.227 0.372 0.052 0.160 0.397
Zero-One Loss 0.331 0.487 0.146 0.191 0.352 0.624 0.707 0.202 0.319 0.756

F1-Score 0.687 0.284 0.790 0.858 0.571 0.642 0.252 0.836 0.652 0.330
Sample-ACC 0.781 0.770 0.937 0.860 0.831 0.489 0.543 0.896 0.726 0.380

Avg. Label-ACC 0.880 0.746 0.972 0.955 0.887 0.773 0.628 0.948 0.840 0.603
+-ACC +0.292 +0.227 +0.041 +0.134 +0.451 -0.292 -0.227 -0.041 -0.134 -0.451

Confuse-set strategy is 0.052. Misclassification rates are particu-
larly high in the J48 + CDN combination under the Confuse-set
strategy, with a Hamming Loss of 0.372, indicating greater
susceptibility to noise interference. Additionally, the Zero-
One Loss under the Confuse-set strategy’s worst combination
reaches 0.756, significantly higher than the Core-set strategy’s
highest value of 0.487.

In terms of F1-score, the Core-set strategy’s REP Tree + CC
combination performs best, with a score of 0.858, while the
best-performing combination under the Confuse-set strategy
is Random Forest + BR, with a score of 0.836. Despite some
favorable results in the Confuse-set strategy, the Core-set
strategy remains more stable as noise increases.

Overall, as noise increases to 10%, the Core-set strategy
maintains consistent performance across multiple key metrics,
while the Confuse-set strategy exhibits larger fluctuations, espe-
cially in certain combinations. This demonstrates the superior
adaptability of the Core-set strategy in noisy environments,
where its representative sample selection plays a crucial role.

4) Comparison of Core-set and Confuse-set Strategies
on the Drebin under 15% Noise: As noise intensity further
increases to 15%, the performance gap between the Core-
set and Confuse-set strategies becomes even more evident.
According to the data in Table III, despite the higher uncertainty
introduced by the noise, the Core-set strategy continues to
perform well across key metrics such as Sample-ACC and Avg.
Label-ACC. In the Core-set strategy, all combinations maintain
a Sample-ACC above 0.591, with only one combination falling
below 0.78. The highest value, 0.944, is achieved by the
Random Forest + BR combination. By contrast, the best Sample-
ACC in the Confuse-set strategy is 0.689 (achieved by the REP
Tree + BR combination), while the lowest value is 0.356.

When comparing the same methods, Core-set again consis-
tently outperforms Confuse-set. The smallest gap, observed in
the CC + REPtree combination, is 0.187, slightly larger than
under the 10% noise condition. In the largest gap, found in
the CDN + J48 combination, the difference is 0.387, which,
although reduced from the 10% noise condition, remains
significant. This reflects the continued strong performance
of the Core-set strategy in a highly noisy environment.

In terms of Avg. Label-ACC, the Core-set strategy remains
more stable, with all combinations achieving values above
0.675 and only one combination below 0.850. The highest
value is 0.966, while the Confuse-set strategy shows much
greater variability, with the lowest Avg. Label-ACC being
0.656 and the highest only 0.907. These results suggest that

even with 15% noise, the Core-set strategy still has a distinct
advantage in label-level classification accuracy.

Hamming Loss and Zero-One Loss analyses further support
this trend. The Core-set strategy’s Random Forest + BR
combination achieves the lowest Hamming Loss at 0.034, while
the best Hamming Loss under the Confuse-set strategy is 0.093.
Misclassification instability is particularly pronounced in the
LMT + CDN combination under the Confuse-set strategy,
where the Hamming Loss reaches 0.344, showing that the
Confuse-set strategy is more vulnerable to noise interference at
higher levels. In terms of Zero-One Loss, the worst-performing
combination in the Core-set strategy, LMT + CDN, still only
reaches 0.613, while the highest value under the Confuse-set
strategy is 0.785, further illustrating the Confuse-set strategy’s
sharp decline in performance when handling noisier data.

Regarding F1-score, the Core-set strategy’s Random Forest
+ BR combination again performs best, achieving 0.789, while
the Confuse-set strategy’s best combination, Random Forest +
BR, scores 0.744. Although the Confuse-set strategy performs
well in certain combinations, its overall stability is weaker.

In conclusion, as the noise intensity rises to 15%, the Core-
set strategy excels in selecting representative samples and
controlling misclassifications, maintaining high classification
performance. While the Confuse-set strategy demonstrates
potential in certain combinations, its overall volatility increases,
particularly when noise is 15%.

5) Comprehensive Analysis of Two Strategies in the Drebin
Under Noisy Conditions: In the CalmDroid, the performance
of the Core-set and Confuse-set strategies shows significant
differences under 5%, 10%, and 15% noise conditions. Overall,
the Core-set strategy exhibits greater robustness and consistency
in the face of noise interference, while the Confuse-set strategy
demonstrates a marked decline in stability as noise intensity
increases.

Robustness and Stability: At lower noise levels (5%), the
Core-set strategy remains particularly stable, with almost all
combinations of Sample-ACC and Avg. Label-ACC main-
taining high levels. As noise increases to 10% and 15%,
although classification performance declines, the Core-set
strategy continues to achieve high classification accuracy, with
its lowest Sample-ACC and Avg. Label-ACC remaining within
acceptable ranges. This indicates that the Core-set strategy
is better at identifying representative samples amidst noisy
data, ensuring satisfactory classification performance even in
high-noise environments.

43

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

TABLE III: 15% noise detailed comparison of metrics for different algorithm combinations in different strategies on Drebin.

Strategy Core (with MLC) Confuse (with MLC)
CDN CDN BR CC CDN CDN CDN BR CC CDN

Basic
Classifier LMT J48 Random

Forest
REP
Tree

REP
Tree LMT J48 Random

Forest
REP
Tree

REP
Tree

Hamming Loss 0.325 0.150 0.034 0.053 0.067 0.310 0.344 0.093 0.214 0.303
Zero-One Loss 0.613 0.423 0.167 0.307 0.256 0.759 0.785 0.420 0.348 0.548

F1-Score 0.267 0.555 0.789 0.754 0.737 0.529 0.388 0.744 0.603 0.371
Sample-ACC 0.591 0.789 0.944 0.876 0.804 0.356 0.402 0.669 0.689 0.635

Avg. Label-ACC 0.675 0.850 0.966 0.947 0.933 0.690 0.656 0.907 0.786 0.697
+-ACC +0.235 +0.387 +0.275 +0.187 +0.169 -0.235 -0.387 -0.275 -0.187 -0.169

In contrast, the Confuse-set strategy achieves relatively
good results at 5% noise but exhibits significant fluctuations
as noise intensity increases, especially under 10% and 15%
conditions. Notably, in certain combinations, such as LMT +
CDN, the Sample-ACC of the Confuse-set drops sharply to
0.356, indicating its poor robustness and inability to effectively
tackle the challenges posed by noisy data.

Misclassification Control: The ability to control misclassi-
fication is a key metric for assessing the robustness of active
learning strategies. Analysis of Hamming Loss and Zero-One
Loss reveals that the Core-set strategy maintains a lower
misclassification rate across various noise levels, particularly
outperforming the Confuse-set strategy under high noise (15%).
Conversely, the Confuse-set strategy experiences a significant
increase in misclassification risk as noise intensity rises, with
some combinations exceeding a Zero-One Loss of 0.750 at 15%
noise, indicating a propensity for substantial misclassification
in high-noise environments.

Overall Trend: As noise levels increase from 5% to 15%,
the Core-set strategy consistently outperforms the Confuse-set
strategy across all noise conditions, particularly demonstrating
better stability and misclassification control in high-noise
scenarios. This trend suggests that the Core-set strategy
effectively selects representative samples to mitigate the adverse
effects of noise on model performance, thereby enhancing the
model’s generalization capability.

The fundamental reason for this performance difference lies
in the sample selection mechanisms of the two strategies. The
Core-set strategy employs a clustering approach to identify
the most representative core points in the dataset. Even under
noisy conditions, this strategy prioritizes selecting core samples
that are most similar to other samples of the same class,
thereby reducing noise interference in the classification task
and ensuring model robustness. The clustering method can
identify intra-class structures, filtering out noisy points and
enhancing the model’s generalization capacity.

In contrast, the Confuse-set strategy, by selecting ambiguous
samples, tends to favor points with higher uncertainty. However,
in noisy environments, the feature overlap between noisy
samples and genuine samples increases, leading the Confuse-set
to more readily select noisy points as training samples. This sen-
sitivity to noise directly affects the classification performance
of the Confuse-set, resulting in significant fluctuations and an
increased risk of misclassification in high-noise conditions.

Thus, from the perspective of active learning, the Core-

set strategy more precisely selects representative samples,
effectively mitigating noise interference during model training.
In contrast, the Confuse-set strategy, due to its sample selection
mechanism, is more susceptible to noise interference, exhibiting
greater instability.

6) Analysis of the Core-set Strategy Over Time in
the Drebin Under 5% Noise: Under 5% noise conditions,
the performance of the Core-set strategy in the CalmDroid
demonstrates the positive impact of temporal evolution on
classification performance. By analyzing Sample-ACC and
Avg. Label-ACC across five different classifier combinations,
we observe changes in overall performance over time.

In the Core-set strategy, as shown in Fig. 4 (a), the Sample-
ACC and Avg. Label-ACC for the CDN + J48 combination
exhibit a steady upward trend throughout the timeline. At Step
1, the Sample-ACC begins at a low point of approximately 0.5,
but significant improvements are evident by Step 2, culminating
in stability near 0.8 by Step 3. The Avg. Label-ACC starts at
0.6 and steadily increases to 0.9 by Step 3. This trend indicates
that this combination is sensitive to the increasing quantity of
training data over time, effectively leveraging data volume to
enhance classification capabilities.

Similarly, in Fig. 4 (b), the CDN + REPTree combination
shows a steady increase in both metrics over time. Sample-
ACC rises from about 0.6 at Steps 1 and 2, reaching nearly
0.8 and 0.9 by Step 3. This temporal improvement further
validates that, under low noise conditions, the Core-set strategy
can enhance model performance as data accumulates.

In Fig. 4 (c), the performance of the BR + RandomForest
combination under the Core-set strategy mirrors the previous
combinations but shows more pronounced improvement. Both
metrics consistently rise throughout the timeline, with Sample-
ACC and Avg. Label-ACC exceeding 0.9 at Step 3. This trend
reinforces the idea that the Core-set strategy optimizes training
set quality over time through representative sample selection.

The CDN + LMT combination in Fig. 4 (d) exhibits different
volatility compared to the prior combinations. Although there is
a noticeable upward trend in Sample-ACC and Avg. Label-ACC
during Steps 1 and 2, fluctuations occur at Step 3, particularly
with Sample-ACC experiencing a decline and Avg. Label-ACC
showing variability, yet both metrics remain above 0.8 and 0.9
overall. This volatility may relate to the complexity of label
changes and the combination’s lower sensitivity to data volume.
Nonetheless, the Core-set strategy maintains high performance.

In Fig. 4 (e), the CC + REPTree combination displays a
persistent upward trend in Avg. Label-ACC similar to Figures

44

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

0.4

0.7

1.0
Sa

m
pl

e-
Ac

c
or

 L
-a

vg
.

(a) CDN+J48

Sample-Acc
L-avg.

(b) CDN+REPTree

Sample-Acc
L-avg.

(c) BR+RandomForest

Sample-Acc
L-avg.

1 2 3
Step

0.4

0.7

1.0

Sa
m

pl
e-

Ac
c

or
 L

-a
vg

.

(d) CDN+LMT

Sample-Acc
L-avg.

1 2 3
Step

(e) CC+REPTree

Sample-Acc
L-avg.

(a) Comparison of Sample and Average Label
Accuracy per Step for CDN+J48
(b) Comparison of Sample and Average Label
Accuracy per Step for CDN+REPTree
(c) Comparison of Sample and Average Label
Accuracy per Step for BR+RandomForest
(d) Comparison of Sample and Average Label
Accuracy per Step for CDN+LMT
(e) Comparison of Sample and Average Label
Accuracy per Step for CC+REPTree

Fig. 4: Core-set Strategy Over Time in the Drebin Under 5% Noise.

a, b, and c, while Sample-ACC experiences a dip followed
by recovery. Although Sample-ACC slightly decreases at Step
1, it rebounds above 0.8 by Step 3, with Avg. Label-ACC
consistently rising to nearly 0.9. This pattern suggests initial
insensitivity to data changes, which adjusts as the dataset grows
over time.

The significant increases observed in Figures a and b indicate
these combinations are sensitive to changes in data volume,
particularly as sample sizes in the training set increase with
time. Over the timeline, the active learning strategy expands the
training set, peaking at Step 3, leading to marked improvements
in Sample-ACC and Avg. Label-ACC. In contrast, Figures c,
d, and e show relative insensitivity to initial data volume,
displaying a more stable trend with minor impacts from
increased data quantity.

Furthermore, the temporal trends of Sample-ACC in Figures
a, b, and c illustrate that overall performance improves over
time, supporting the positive correlation between data volume
and model performance. Conversely, the fluctuations in Figures
d and e indicate sensitivity to label changes within the
training set. Notably, the label proportions in Steps 1 and
2 undergo significant alterations, reverting to a distribution
similar to Step 1 by Step 3. This fluctuation is similar to
findings that Android malware behaviors and labels evolve over
time[16], reflecting specific patterns that manifest in classifier
performance variations.

E. Experimental Results on the VirusShare

1) Experimental Setup: Based on our earlier experiments
with the Drebin, the BR + RandomForest combination per-
formed well under both the Core-set and Confuse-set strategies.
Therefore, we utilize this combination as the model’s BC and
MLC in the VirusShare with varying noise levels.

2) Comprehensive Analysis of Two Strategies in the
VirusShare Under Noisy Conditions: As shown in Table IV,
under the Core-set strategy, Sample-ACC displays a relatively
stable trend with increasing noise. At 5% noise, Sample-ACC

reaches 0.945, rising to 0.961 at 10% noise, and slightly
decreasing to 0.950 at 15%. This trend indicates that the Core-
set strategy effectively mitigates noise interference, maintaining
high classification accuracy even in higher noise environments.

The Avg. Label-ACC follows a similar trend, steadily
increasing from 0.953 at 5% noise to 0.962 at 10%, then
slightly dropping to 0.960 at 15%. This suggests that the
Core-set strategy retains good label classification performance
even under high noise. Additionally, Hamming Loss exhibits
slight fluctuations, decreasing from 0.047 at 5% noise to 0.038
at 10%, then rising to 0.040 at 15%, with overall minor
variations. Zero-One Loss remains low, demonstrating effective
misclassification control, while the F1 Score remains stable
with minimal variation.

Conversely, the Confuse-set strategy shows pronounced
sensitivity to increasing noise levels. Sample-ACC drops
sharply from 0.921 at 5% noise to 0.845 at 10%, and further
declines to 0.784 at 15%, highlighting its instability in high-
noise environments. Similarly, Avg. Label-ACC decreases from
0.957 at 5% noise to 0.950 at 10%, and then to 0.921 at 15%. As
noise increases, the Confuse-set strategy experiences significant
deterioration in label classification performance, particularly
in high-noise conditions.

In terms of misclassification control, both Hamming Loss and
Zero-One Loss significantly increase with noise, indicating a
higher misclassification risk for the Confuse-set strategy under
high noise. Notably, at 15% noise, Zero-One Loss reaches
0.261, significantly exceeding that of the Core-set strategy.
Additionally, the F1 Score trends downward, reflecting the
deterioration of the Confuse-set strategy’s performance in label
classification tasks as noise increases.

The Core-set strategy consistently outperforms the Confuse-
set strategy under all noise conditions, particularly at 10% and
15% noise, where the Core-set strategy maintains a Sample-
ACC around 0.95, while the Confuse-set drops to 0.784. This
confirms the superior robustness of the Core-set strategy in

45

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Performance of BR Random Forest on Core and Confuse strategies under different noise levels on VirusShare.

Metric Core Strategy Confuse Strategy
5% Noise 10% Noise 15% Noise 5% Noise 10% Noise 15% Noise

Sample-ACC 0.945 0.961 0.95 0.921 0.845 0.784
Hamming Loss 0.047 0.038 0.040 0.043 0.050 0.079

F1 Score 0.437 0.432 0.438 0.413 0.403 0.387
0/1 Loss 0.242 0.174 0.192 0.152 0.211 0.261

Label Accuracy - - - - - -
L1 0.989 0.984 0.987 0.966 0.974 0.955
L2 1 1 1 0.997 1 0.968
L3 0.8 0.863 0.842 0.895 0.908 0.887
L4 1 1 1 0.997 1 0.976
L5 0.992 0.992 0.992 0.995 0.997 0.966
L6 0.937 0.934 0.937 0.889 0.824 0.774

Avg. Label-ACC 0.953 0.962 0.960 0.957 0.950 0.921

sustaining high classification accuracy in noisy environments.
Avg. Label-ACC comparisons reveal a similar trend, with the

Core-set strategy maintaining higher average label classification
accuracy across all noise levels. At 15% noise, the Confuse-
set’s Avg. Label-ACC declines to 0.921, while the Core-set
remains at 0.960, further validating the advantages of the Core-
set strategy in multi-label classification tasks.

Comparing Hamming Loss and Zero-One Loss demonstrates
the Core-set strategy’s excellent misclassification control,
particularly in high-noise conditions, where its Hamming Loss
remains consistently lower than that of the Confuse-set strategy,
which experiences significant instability as noise increases,
especially at 15% noise when its Zero-One Loss peaks.

At the label level, the Core-set strategy consistently achieves
near-perfect accuracy (approaching 1) for labels such as L1,
L2, and L4, whereas the Confuse-set exhibits substantial
fluctuations as noise increases. Notably, the accuracy for label
L6 drops to 0.774 under 15% noise for the Confuse-set,
while the Core-set sustains 0.937. This indicates the Core-
set strategy’s superior robustness in handling complex labels
and its effectiveness in mitigating label-level noise interference.

Overall, the Core-set strategy employed by the CalmDroid
significantly outperforms the Confuse-set strategy across vary-
ing noise environments, particularly in terms of Sample-ACC
and Avg. Label-ACC. Even under higher noise levels, the Core-
set strategy maintains high classification accuracy and effective
misclassification control, while the Confuse-set strategy is
highly sensitive to noise, exhibiting marked performance
deterioration with increasing noise. This disparity highlights the
superior robustness and adaptability of the CalmDroid utilizing
the Core-set strategy in high-noise conditions.

IV. THREAT TO VALIDITY

The external validity in this work comes from the se-
lected datasets. Although anonymousCERT contains only 180
malware samples, all labels undergo verification and voting
by all co-authors. The labels are reliable, and supported by
detailed security reports. The multi-label labels in Drebin and
VirusShare result from clustering. We state that these may
contain noise. However, CalmDroid is designed to tolerate
noisy data. Experimental results confirm this conclusion. The
predictive performance of Drebin and VirusShare also briefly
demonstrates the robustness of CalmDroid.

Internal validity relates to feature selection. We extract
static features of malware, such as API, permission, etc.
These static features are derived from the security reports
in anonymousCERT. All 531 static features, including 6 labels
(e.g., message and ad), are linked to understanding malware
behavior based on source code. From this perspective, we
consider this work a significant contribution to program analysis
and comprehension. Additionally, Li et al. [46] also demonstrate
the importance of static features in comprehending malicious
behaviors.

V. RELATED WORK

To identify whether an Android application is malicious,
feature extraction is the fundamental step. Malware detection
can be categorized into three main types: static analysis [22,
23, 24, 25, 26, 27, 28]; dynamic analysis [29, 30] ; and hybrid
approaches [31, 32, 33]. However, basic detection methods
offer limited alerts for various malware types, necessitating
finer granularity in classification.

Currently, Android malware classification is divided into
single-label [34, 35, 36] and multi-label classification [13].
In single-label classification, [37] Hassen introduced a neural
network representation method for open set recognition, while
[38] Jiang et al. proposed a one-vs-all ensemble method to
enhance accuracy by establishing strict decision boundaries.
Research [39] presented a continuous learning framework that
uses active learning to update models for newly emerging
malware. Multi-label classification, as explored by [13] Qiao
et al., faces additional challenges, employing active learning
to categorize unlabeled samples from small, labeled datasets.

Active learning models, particularly the confuse-set strategy
[40, 41, 43], have gained interest. [44] Guerra-Manzanares
utilized this strategy to select uncertain samples for expert
labeling, improving IoT botnet detection accuracy while
reducing labeling resource demands. Conversely, the core-
set strategy has seen limited application in Android malware
classification but has proven effective in other domains. Qiang
et al. [45] applied this strategy to intelligently select informative
code samples, significantly enhancing training efficiency and
reducing the need for manual annotation.

VI. CONCLUSION

This work presents the CalmDroid, which integrates Core-Set
strategy and active learning for multi-label Android malware

46

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

classification in noisy environments. We show that, in this
challenging setting, CalmDroid achieves superior performance
compared to conventional strategies like the confuse-set ap-
proach, delivering more stable and accurate classification
despite noise interference. The model also adapts to the
evolving nature of Android malware over time, making it
a promising solution for future security tasks.

ACKNOWLEDGMENT

This work was partially supported by the National Nat-
ural Science Foundation of China (62302148, 62472309),
Hebei Natural Science Foundation (F2024202076) and Hebei
Yanzhao HuangJintai Talents Program (Postdoctoral Platform)
(B2024003002).

REFERENCES

[1] Number of smartphone mobile network subscriptions
worldwide from 2016 to 2023, with forecasts from
2023 to 2028, [Online], Accessed October, 2024. https:
//www.statista.com/statistics/330695/.

[2] Global smartphone sales share by operating
system, [Online], Accessed October, 2024.
https://www.counterpointresearch.com/insights/
global-smartphone-os-market-share/.

[3] Y. Shen, P.-A. Vervier, G. Stringhini, A large-scale tempo-
ral measurement of android malicious apps: Persistence,
migration, and lessons learned, in: 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 1167–1184.

[4] Y. Bai, S. Chen, Z. Xing, X. Li, Argusdroid: detect-
ing android malware variants by mining permission-api
knowledge graph, Science China Information Sciences
66 (2023) 192101.

[5] B. Wu, S. Chen, C. Gao, L. Fan, Y. Liu, W. Wen, and M.
R. Lyu, ”Why an android app is classified as malware:
Toward malware classification interpretation,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 2, pp. 1-29, 2021.

[6] C. Wu, S. Chen, J. Li, R. Chai, L. Fan, X. Xie, and R.
Feng, ”Beyond Decision: Android Malware Description
Generation through Profiling Malicious Behavior Trajec-
tory,” ACM Trans. Softw. Eng. Methodol., accepted on
10 January 2025, to be published.

[7] K. Allix, T. F. Bissyandé, J. Klein, Y. Le Traon, Androzoo:
Collecting millions of android apps for the research
community, in: Proceedings of the 13th international
conference on mining software repositories, 2016, pp.
468–471.

[8] H. Li, G. Xu, L. Wang, X. Xiao, X. Luo, G. Xu, H. Wang,
Malcertain: Enhancing deep neural network based android
malware detection by tackling prediction uncertainty,
in: Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, 2024.

[9] J. Yang, S. Ma, Z. Zhang, Y. Li, S. Xiao, J. Wen, W. Lu,
X. Gao, Say no to redundant information: Unsupervised
redundant feature elimination for active learning, IEEE
Transactions on Multimedia 26 (2024) 7721–7733.

[10] VirusShare, [Online], Accessed October, 2024. https://
virusshare.com.

[11] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K.
Rieck, and C. Siemens, “Drebin: Effective and explainable
detection of android malware in your pocket.,” in Ndss,
2014, pp. 23–26. Accessed: Sep. 30, 2024.

[12] VirusShare.com - Because Sharing is Caring. [Online].
Available: https://virusshare.com/

[13] Q. Qiao, R. Feng, S. Chen, F. Zhang, and X. Li, “Multi-
label classification for android malware based on active
learning,” IEEE Transactions on Dependable and Secure
Computing, 2022, Accessed: Sep. 30, 2024.

[14] J. Read, P. Reutemann, B. Pfahringer, and G. Holmes,
“Meka: a multi-label/multi-target extension to weka,”
Journal of Machine Learning Research, vol. 17, no. 21,
pp. 1–5, 2016.

[15] Meka project. [Online]. Available: https://github.com/Wa
ikato/meka/tree/f0cc96133399afa4c80d2b8a6342913fe90
57fb0

[16] A. M. R. AlSobeh, K. Gaber, M. M. Hammad, M. Nuser,
and A. Shatnawi, “Android malware detection using time-
aware machine learning approach,” Cluster Comput, vol.
27, no. 9, pp. 12627–12648, Dec. 2024.

[17] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu,
“A performance-sensitive malware detection system using
deep learning on mobile devices,” IEEE Transactions
on Information Forensics and Security, vol. 16, pp.
1563–1578, 2020.

[18] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil,
and S. Furnell, “Androdialysis: Analysis of android intent
effectiveness in malware detection,” computers & security,
vol. 65, pp. 121–134, 2017.

[19] Y. Bai, Z. Xing, X. Li, Z. Feng, and D. Ma, “Unsuccessful
story about few shot malware family classification and
siamese network to the rescue,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, Seoul South Korea: ACM, Jun. 2020, pp.
1560–1571.

[20] Android developer docs. [Online]. Available:
https://developer.android.google.cn/reference

[21] S. Chen et al., “An empirical assessment of security risks
of global Android banking apps,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, Seoul South Korea: ACM, Jun. 2020, pp.
1310–1322.

[22] B. Wang, C. Yang, and J. Ma, “Iafdroid: Demystifying col-
lusion attacks in android ecosystem via precise inter-app
analysis,” IEEE Transactions on Information Forensics
and Security, vol. 18, pp. 2883–2898, 2023.

[23] K. O. Elish, M. O. Elish, and H. M. Almohri,
“Lightweight, effective detection and characterization
of mobile malware families,” IEEE Transactions on
Computers, vol. 71, no. 11, pp. 2982–2995, 2022.

[24] H. Gao, S. Cheng, and W. Zhang, “GDroid: Android mal-
ware detection and classification with graph convolutional
network,” Computers & Security, vol. 106, p. 102264,

47

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

2021.
[25] G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone,

“Towards an interpretable deep learning model for mobile
malware detection and family identification,” Computers
& Security, vol. 105, p. 102198, 2021.

[26] Y. Wu, S. Dou, D. Zou, W. Yang, W. Qiang, and H. Jin,
“Contrastive learning for robust android malware familial
classification,” IEEE Transactions on Dependable and
Secure Computing, 2022, Accessed: Sep. 30, 2024.

[27] L. Shi et al., “VAHunt: Warding Off New Repackaged
Android Malware in App-Virtualization’s Clothing,” in
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event
USA: ACM, Oct. 2020, pp. 535–549.

[28] Bai, Y., Xing, Z., Li, X., Feng, Z., & Ma, D. Unsuccessful
story about few shot malware family classification and
siamese network to the rescue. In Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering (ICSE), 2020, pp. 1560-1571.

[29] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid:
Deep learning based android malware detection using
real devices,” Computers & Security, vol. 89, p. 101663,
2020.

[30] E. Amer, I. Zelinka, and S. El-Sappagh, “A multi-
perspective malware detection approach through behav-
ioral fusion of api call sequence,” Computers & Security,
vol. 110, p. 102449, 2021.

[31] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian,
“Ec2: Ensemble clustering and classification for predict-
ing android malware families,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 2, pp.
262–277, 2017.

[32] Q. Han, V. S. Subrahmanian, and Y. Xiong, “Android
malware detection via (somewhat) robust irreversible fea-
ture transformations,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3511–3525, 2020.

[33] E. Amer and S. El-Sappagh, “Robust deep learning early
alarm prediction model based on the behavioural smell
for android malware,” Computers & Security, vol. 116, p.
102670, 2022.

[34] T. Lu and J. Wang, “F2DC: Android malware classifica-
tion based on raw traffic and neural networks,” Computer
Networks, vol. 217, p. 109320, 2022.

[35] J. Tang, R. Li, Y. Jiang, X. Gu, and Y. Li, “Android
malware obfuscation variants detection method based
on multi-granularity opcode features,” Future Generation
Computer Systems, vol. 129, pp. 141–151, 2022.

[36] B. Yuan, J. Wang, D. Liu, W. Guo, P. Wu, and X.
Bao, “Byte-level malware classification based on markov
images and deep learning,” Computers & Security, vol.
92, p. 101740, 2020.

[37] M. Hassen and P. K. Chan, “Learning a neural-network-
based representation for open set recognition,” In Pro-
ceedings of the 2020 SIAM International Conference on
Data Mining, 2020, pp. 154-162. Society for Industrial
and Applied Mathematics.

[38] Jang, Jaeyeon, and Chang Ouk Kim. ”Collective decision
of one-vs-rest networks for open-set recognition.” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 35, no. 2 , pp. 2327-2338, 2022.

[39] Y. Chen, Z. Ding, and D. Wagner, “Continuous learning
for android malware detection,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 1127–1144.
Accessed: Sep. 30, 2024.

[40] A. Chaudhary, A. Anastasopoulos, Z. Sheikh, and G.
Neubig, “Reducing confusion in active learning for part-
of-speech tagging,” Transactions of the Association for
Computational Linguistics, vol. 9, 2021, Accessed: Sep.
30, 2024.

[41] D. Arp et al., “Dos and don’ts of machine learning in
computer security,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 3971–3988. Accessed:
Sep. 30, 2024.

[42] R. Feng, S. Li, S. Chen, M. Ge, X. Li, and X. Li,
”Unmasking the Lurking: Malicious Behavior Detection
for IoT Malware with Multi-label Classification,” in Proc.
25th ACM SIGPLAN/SIGBED Int. Conf. Languages,
Compilers, and Tools for Embedded Syst., Jun. 2024, pp.
95-106.

[43] D. Yoo and I. S. Kweon, “Learning loss for active
learning,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019, pp.
93–102. Accessed: Sep. 30, 2024.

[44] A. Guerra-Manzanares and H. Bahsi, “On the application
of active learning for efficient and effective IoT botnet
detection,” Future Generation Computer Systems, vol.
141, pp. 40–53, 2023.

[45] Q. Hu et al., “Active Code Learning: Benchmarking
Sample-Efficient Training of Code Models,” IEEE Trans-
actions on Software Engineering, 2024, Accessed: Sep.
30, 2024.

[46] Md Shamsujjoha, John Grundy, Li Li, Hourieh Khala-
jzadeh, Qinghua Lu, Checking app behavior against
app descriptions: What if there are no app descriptions?,
in: 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC), 2021, pp. 422–432.

[47] Wang C, Yu H, Li X, et al. Dependency-Aware Microser-
vice Deployment for Edge Computing: A Deep Reinforce-
ment Learning Approach with Network Representation[J].
IEEE Transactions on Mobile Computing (TMC), 2024.

[48] Wang X, Dong Y, Jin D, et al. Augmenting affective
dependency graph via iterative incongruity graph learning
for sarcasm detection[C]. In Proceedings of the AAAI
conference on artificial intelligence (AAAI). 2023, 37(4):
4702-4710.

[49] Zhang, J., He, R., Guo, F., & Liu, C. (2024, March).
Quantum Interference Model for Semantic Biases of
Glosses in Word Sense Disambiguation. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI),
2024, pp. 19551-19559.

48

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on February 02,2026 at 03:31:34 UTC from IEEE Xplore. Restrictions apply.

